direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×C3⋊D4, C24⋊5S3, C23⋊5D6, D6⋊3C23, C6.15C24, Dic3⋊2C23, (C2×C6)⋊9D4, C6⋊3(C2×D4), C3⋊3(C22×D4), (C2×C6)⋊3C23, (C23×C6)⋊4C2, (S3×C23)⋊5C2, C2.15(S3×C23), (C22×C6)⋊7C22, C22⋊3(C22×S3), (C22×S3)⋊7C22, (C22×Dic3)⋊9C2, (C2×Dic3)⋊11C22, SmallGroup(96,219)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×C3⋊D4
G = < a,b,c,d,e | a2=b2=c3=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 498 in 236 conjugacy classes, 105 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C23, C23, Dic3, D6, D6, C2×C6, C2×C6, C22×C4, C2×D4, C24, C24, C2×Dic3, C3⋊D4, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C22×D4, C22×Dic3, C2×C3⋊D4, S3×C23, C23×C6, C22×C3⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C3⋊D4, C22×S3, C22×D4, C2×C3⋊D4, S3×C23, C22×C3⋊D4
(1 44)(2 41)(3 42)(4 43)(5 46)(6 47)(7 48)(8 45)(9 18)(10 19)(11 20)(12 17)(13 25)(14 26)(15 27)(16 28)(21 35)(22 36)(23 33)(24 34)(29 40)(30 37)(31 38)(32 39)
(1 5)(2 6)(3 7)(4 8)(9 23)(10 24)(11 21)(12 22)(13 32)(14 29)(15 30)(16 31)(17 36)(18 33)(19 34)(20 35)(25 39)(26 40)(27 37)(28 38)(41 47)(42 48)(43 45)(44 46)
(1 15 20)(2 17 16)(3 13 18)(4 19 14)(5 30 35)(6 36 31)(7 32 33)(8 34 29)(9 42 25)(10 26 43)(11 44 27)(12 28 41)(21 46 37)(22 38 47)(23 48 39)(24 40 45)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 46)(2 45)(3 48)(4 47)(5 44)(6 43)(7 42)(8 41)(9 32)(10 31)(11 30)(12 29)(13 23)(14 22)(15 21)(16 24)(17 40)(18 39)(19 38)(20 37)(25 33)(26 36)(27 35)(28 34)
G:=sub<Sym(48)| (1,44)(2,41)(3,42)(4,43)(5,46)(6,47)(7,48)(8,45)(9,18)(10,19)(11,20)(12,17)(13,25)(14,26)(15,27)(16,28)(21,35)(22,36)(23,33)(24,34)(29,40)(30,37)(31,38)(32,39), (1,5)(2,6)(3,7)(4,8)(9,23)(10,24)(11,21)(12,22)(13,32)(14,29)(15,30)(16,31)(17,36)(18,33)(19,34)(20,35)(25,39)(26,40)(27,37)(28,38)(41,47)(42,48)(43,45)(44,46), (1,15,20)(2,17,16)(3,13,18)(4,19,14)(5,30,35)(6,36,31)(7,32,33)(8,34,29)(9,42,25)(10,26,43)(11,44,27)(12,28,41)(21,46,37)(22,38,47)(23,48,39)(24,40,45), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,46)(2,45)(3,48)(4,47)(5,44)(6,43)(7,42)(8,41)(9,32)(10,31)(11,30)(12,29)(13,23)(14,22)(15,21)(16,24)(17,40)(18,39)(19,38)(20,37)(25,33)(26,36)(27,35)(28,34)>;
G:=Group( (1,44)(2,41)(3,42)(4,43)(5,46)(6,47)(7,48)(8,45)(9,18)(10,19)(11,20)(12,17)(13,25)(14,26)(15,27)(16,28)(21,35)(22,36)(23,33)(24,34)(29,40)(30,37)(31,38)(32,39), (1,5)(2,6)(3,7)(4,8)(9,23)(10,24)(11,21)(12,22)(13,32)(14,29)(15,30)(16,31)(17,36)(18,33)(19,34)(20,35)(25,39)(26,40)(27,37)(28,38)(41,47)(42,48)(43,45)(44,46), (1,15,20)(2,17,16)(3,13,18)(4,19,14)(5,30,35)(6,36,31)(7,32,33)(8,34,29)(9,42,25)(10,26,43)(11,44,27)(12,28,41)(21,46,37)(22,38,47)(23,48,39)(24,40,45), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,46)(2,45)(3,48)(4,47)(5,44)(6,43)(7,42)(8,41)(9,32)(10,31)(11,30)(12,29)(13,23)(14,22)(15,21)(16,24)(17,40)(18,39)(19,38)(20,37)(25,33)(26,36)(27,35)(28,34) );
G=PermutationGroup([[(1,44),(2,41),(3,42),(4,43),(5,46),(6,47),(7,48),(8,45),(9,18),(10,19),(11,20),(12,17),(13,25),(14,26),(15,27),(16,28),(21,35),(22,36),(23,33),(24,34),(29,40),(30,37),(31,38),(32,39)], [(1,5),(2,6),(3,7),(4,8),(9,23),(10,24),(11,21),(12,22),(13,32),(14,29),(15,30),(16,31),(17,36),(18,33),(19,34),(20,35),(25,39),(26,40),(27,37),(28,38),(41,47),(42,48),(43,45),(44,46)], [(1,15,20),(2,17,16),(3,13,18),(4,19,14),(5,30,35),(6,36,31),(7,32,33),(8,34,29),(9,42,25),(10,26,43),(11,44,27),(12,28,41),(21,46,37),(22,38,47),(23,48,39),(24,40,45)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,46),(2,45),(3,48),(4,47),(5,44),(6,43),(7,42),(8,41),(9,32),(10,31),(11,30),(12,29),(13,23),(14,22),(15,21),(16,24),(17,40),(18,39),(19,38),(20,37),(25,33),(26,36),(27,35),(28,34)]])
C22×C3⋊D4 is a maximal subgroup of
C24.23D6 C24.24D6 C24.60D6 C24.25D6 C23⋊3D12 C24.27D6 C24.76D6 C24.32D6 C24.35D6 C24.38D6 C23⋊4D12 C24⋊7D6 C24⋊8D6 C24.44D6 C24.45D6 C24⋊12D6 C22×S3×D4
C22×C3⋊D4 is a maximal quotient of
C24.83D6 C24⋊12D6 C24.52D6 C24.53D6 C6.442- 1+4 C6.452- 1+4 C12.C24 C6.1042- 1+4 C6.1052- 1+4 (C2×D4)⋊43D6 C6.1452+ 1+4 C6.1462+ 1+4 C6.1072- 1+4 (C2×C12)⋊17D4 C6.1082- 1+4 C6.1482+ 1+4 D12.32C23 D12.33C23 D12.34C23 D12.35C23
36 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 3 | 4A | 4B | 4C | 4D | 6A | ··· | 6O |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 6 | 6 | 6 | 6 | 2 | ··· | 2 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | C3⋊D4 |
kernel | C22×C3⋊D4 | C22×Dic3 | C2×C3⋊D4 | S3×C23 | C23×C6 | C24 | C2×C6 | C23 | C22 |
# reps | 1 | 1 | 12 | 1 | 1 | 1 | 4 | 7 | 8 |
Matrix representation of C22×C3⋊D4 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 11 |
0 | 0 | 0 | 0 | 2 | 9 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,4,2,0,0,0,0,11,9],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C22×C3⋊D4 in GAP, Magma, Sage, TeX
C_2^2\times C_3\rtimes D_4
% in TeX
G:=Group("C2^2xC3:D4");
// GroupNames label
G:=SmallGroup(96,219);
// by ID
G=gap.SmallGroup(96,219);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,579,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations